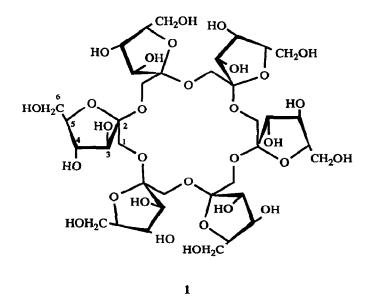


Pergamon

0040-4039(94)01128-1


CAPPED CYCLOFRUCTAN. PREPARATION AND STRUCTURE DETERMINATION OF 6^A,6^C-DI-O-(BIPHENYL-4,4'-DISULFONYL)-CYCLOINULOHEXAOSE

Masato Atsumi, Masayuki Mizuochi, Kazuko Ohta, and Kahee Fujita*

Faculty of Pharmaceutical Sciences, Nagasaki University, Bunkyo-machi, Nagasaki 852, Japan

Abstract: A capped cyclofructan, 6^A , 6^C -di-O-(biphenyl-4,4'-disulfonyl)cycloinulohexaose was selectively prepared by the reaction of cycloinulohexaose with biphenyl-4,4'-disulfonyl chloride in pyridine.

Cycloinulohexaose 1 [hereafter abbreviated as CF-6 (cyclofructan-6)] is a β -(2 \rightarrow 1)-linked cyclohexaose of fructofuranose. This compound is an interesting molecule because it is produced from inulin by cycloinulooligosaccharide fructanotransferase¹ and has a chiral 18-crown-6 structure.^{2,3} Its chemical modification should be investigated to apply the unique structure for constructing artificial enzymes or receptors. However, there has been only one example for chemically modified CF-6; per-O-methylated CF-6.⁴

Sulfonylation on hydroxyls of CF-6 is important since the hydroxyls should be activated usually before their modification. Recently, we reported stepwise di-sulfonylation on the primary hydroxyls of CF-6 and

structure determination of the regiochemical isomers, 6^A , 6^X -bis[O-(2-naphthalenesulfonyl)]-CF-6 (X = B, C, and D) 2-4⁵ by the extended Körner method.⁶ But, the stepwise preparation method is not appropriate for producing the disulfonates because the reaction was not regiochemically selective and the yield of each disulfonate was very low (2, 3.1%; 3, 2.6%; 4, 1.9%)

In this report, we describe one-stage di-sulfonylation on 6^{A} -OH and 6^{C} -OH of CF-6.⁷ This reaction gives an interesting chiral crown ether capped on the one side and a useful starting compound for preparing many bifunctional CF-6 where the functional groups are located on the given positions, 6^{A} and 6^{C} .

A solution of CF-6 1 (500 mg, 5.14 x 10^{-4} mol; dried over P₂O₅ at 100°C overnight) in dry pyridine (150 mL; dried over KOH under refluxing and distilled) was concentrated to 100 mL by distillation under atmospheric pressure to eliminate water included in CF-6. During this procedure, the solution became a suspension because the solubility of CF-6 in pyridine decreases with increasing the temperature. After the mixture was cooled (the mixture became clear), 180 mg (5.14 x 10^{-4} mol) of biphenyl-4,4'-disulfonyl chloride was added to the mixture. After the mixture was stirred for 10 h at room temperature, the reaction

was stopped by addition of water. The reversed-phase HPLC⁸ showed selective formation of one product (Fig. 1). The mixture was concentrated in vacuo and the residue was dissolved into 30% aqueous MeOH and applied on a reversed-phase column⁹ with a gradient elution from 30% aqueous MeOH (1 L) to 80% aqueous MeOH (1 L) to give 6^A,6^C-di-O-(biphenyl-4,4'-disulfonyl)-CF-6 5 (111.2 mg, 17.3%). The FAB mass and ¹H- and ¹³C-NMR spectra supported this structure-determination but cannot be decisive tools for determining the kind and the relative positions of the two sulfonylated hydroxyls. These problems were solved as shown below.

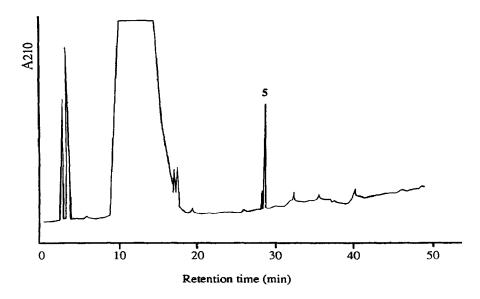


Fig. 1. Reversed-phase HPLC of the mixture obtained by the reaction of cycloinulohexaose with biphenyl-4,4'-disulfonyl chloride in pyridine: a gradient elution from 10% aqueous CH_3CN (30 mL) to 60% aqueous CH_3CN (30 mL); flow rate, 1.0 mL/min

The capped CF-6 was treated with thiophenol/Cs₂CO₃ in DMF to give the corresponding sulfide whose FAB mass spectrum contained the molecular ions (M+H⁺ and M+Na⁺). By comparing its retention time on reversed-phase HPLC⁸ with those (Fig. 2) of the authentic sulfides 6-8¹⁰ which were prepared by the similar reaction of 6^A , 6^X -bis[O-(2-naphthalenesulfonyl)]-CF-6 (X = B, C, and D) 2-4, respectively, it was assigned to the 6^A , 6^C -isomer 7. Therefore, 5 is 6^A , 6^C -di-O-(biphenyl-4,4'-disulfonyl)-CF-6. Since the transannular sulfonates can be substituted with appropriate nucleophiles, we will be able to obtain many chiral crown ethers having appropriate functional groups at the specific positions, 6^A and 6^C .

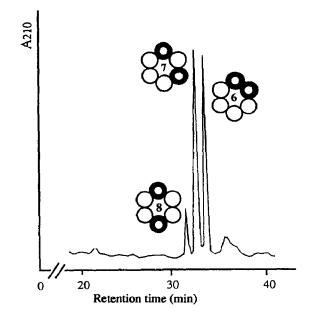


Fig. 2. Reversed-phase HPLC of the mixture of sulfides 6-8 which were obtained by the reaction of 6^{A} , 6^{X} -bis[O-(2-naphthalenesulfonyl)]-cycloinulohexaose (X = B, C, and D) 2-4 with thiophenol, respectively: a gradient elution from 10% aqueous CH₃CN (30 mL) to 60% aqueous CH₃CN (30 mL); flow rate, 1.0 mL/min

References and Notes

- M. Kawamura, T. Uchiyama, T. Kuramoto, Y. Tamura, and K. Mizutani, *Carbohydr. Res.*, 192, 83 (1989).
- M. Sawada, T. Tanaka, Y. Takai, T. Hanafusa, K. Hirotsu, T. Higuchi, M. Kawamura, and T. Uchiyama, *Chem. Lett.*, 2011 (1990); M. Sawada, T. Tanaka, Y. Takai, T. Hanafusa, T. Taniguchi, M. Kawamura, and T. Uchiyama, *Carbohydr. Res.*, 217, 7 (1991).
- 3. T. Uchiyama, M. Kawamura, T. Uragami, and H. Okuno, Carbohydr. Res., 241, 245 (1993).
- 4. Y. Takai, Y. Okumura, S. Takahashi, M. Sawada, M. Kawamura, and T. Uchiyama, J. Chem. Soc., Chem. Commun., 1993, 53.
- 5. K. Fujita, M. Atsumi, K. Ohta, and N. Imaki, Tetrahedron Lett., in press.
- 6. K. Fujita, A. Matsunaga, and T. Imoto, J. Am. Chem. Soc., 106, 5740 (1984); G. Körner, Gazz. Chem. Ital., 4, 305 (1874).
- Transannular di-sulfonylation was developed with β-cyclodextrin by Tabushi and his coworkers. For example; I. Tabushi, K. Shimokawa, N. Shimizu, H. Shirakata, and K. Fujita, J. Am. Chem. Soc., 98, 7855 (1976): I. Tabushi, Y. Kuroda, K. Yokota, and L. C. Yuan, Ibid., 103, 3574 (1981).
- 8. TSKgel ODS-120A (4.6 x 250) column was used.
- 9. Merck Lobar column RP18 (size C) was used.
- 10. Each sulfide was isolated and analyzed by FAB mass spectrum, which contained the molecular ion.

(Received in Japan 8 April 1994; accepted 26 May 1994)